microstructural evolution of x45crniw189 valve steel during hot deformation
نویسندگان
چکیده
the hot compression tests were carried on x45crniw189 valve steel (x45) in the temperature rangeof 1000– 1200 °c and the strain rate range of 0.004 – 0.5 s-1 in order to study the high temperaturesoftening behavior of this steel. for the exact prediction of flow stress, the effective stress-effectivestrain curves were obtained from experiments under various conditions. on the basis of experimentalresults, the dynamic recrystallization fraction (drx), austenite grain size (ags), hot deformation andactivation energy behavior were investigated. it was found that the calculated results were in a goodagreement with the experimental flow stress and the microstructure of the steel for different conditionsof hot deformation.
منابع مشابه
Microstructural Evolution of X45CrNiW189 Valve Steel During Hot Deformation
The hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000– 1200 °C and the strain rate range of 0.004 – 0.5 s-1 in order to study the high temperature softening behavior of this steel. For the exact prediction of flow stress, the effective stress-effective strain curves were obtained from experiments under various conditions. On the basis of experi...
متن کاملMicrostructural Evaluation of Ti-6AL-4V Alloy during Hot Deformation
Among the titanium alloys, Ti-6Al-4V is the most widely used. In the present work, the uniaxial hot compressive behavior of Ti-6Al-4V has been investigated under constant strain rates. A series of dilatometery experiments were carried out to determine the transformation temperatures at different cooling rates. Specimens were homogenized at 1050 °C for 10 minutes followed by fast cooling to dif...
متن کاملMicrostructural Evaluation of Ti-6AL-4V Alloy during Hot Deformation
Among the titanium alloys, Ti-6Al-4V is the most widely used. In the present work, the uniaxial hot compressive behavior of Ti-6Al-4V has been investigated under constant strain rates. A series of dilatometery experiments were carried out to determine the transformation temperatures at different cooling rates. Specimens were homogenized at 1050 °C for 10 minutes followed by fast cooling to dif...
متن کاملThe Strain Dependence of Post-Deformation Softening during the Hot Deformation of 304H Stainless Steel
Experiments were carried out in which the dependence of the fractional softening on temperature, time and strain rate was determined in a 304H stainless steel. Three prestrain ranges were identified pertaining to three different post-deformation softening behaviors: 1) prestraining to below the DRX critical strain: strongly strain dependent softening by SRX alone with softening kinetics control...
متن کاملMicrostructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation
The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s-1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening m...
متن کاملMicrostructural evolution during recrystallization in hot rolled Aluminum Alloy 1050
The evolution of texture as a function of recrystallization has been characterized for hot-rolled AA1050. Samples prepared from a hot rolled sheet were annealed isothermally for sufficient time to allow complete recrystallization. The spatial orientation variation within the deformed microstructure of nucleation, growth and orientations of recrystallized grains is examined. The microstructural ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of iron & steel society of iranناشر: iron & steel society of iran
ISSN 1735-4145
دوره 11
شماره 1 2015
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023